10 research outputs found

    Marqueurs Tumoraux (MT): importance du Contrôle Qualité

    No full text

    Physicochemical stability of oxycodone-ketamine solutions in polypropylene syringe and polyvinyl chloride bag for patient-controlled analgesia use

    No full text
    International audienceObjectives The study evaluated the stability of three combinations of oxycodone and ketamine diluted in normal saline (NS) after storage for 7 days at 23°C and exposed to light.Methods : The stability of three mixtures of oxycodone and ketamine (oxycodone 0.4 mg/mL+ketamine 40 mg/mL, oxycodone 10 mg/mL+ketamine 0.1 mg/mL and oxycodone 10 mg/mL+ketamine 40 mg/mL) in NS stored in a polypropylene syringe and a polyvinyl chloride (PVC) bag was studied. The physical characteristics, including pH, colour and precipitation, were evaluated. The samples were analysed in triplicate by a stability-indicating high-performance liquid chromatography method.Results : There was no significant change in the pH values of any solution. No precipitation or change in colour was observed. All formulations maintained more than 95% of the initial concentration of each drug on day 7. No trace of degradation products was detected.Conclusions : Ketamine (0.1–40 mg/mL) combined with oxycodone (0.4–10 mg/mL) is physically compatible and chemically stable for 7 days when diluted with NS, packaged in polypropylene syringe or PVC bag and stored at 23°C

    Does recombinant human thyrotropin-stimulated positron emission tomography with [18F]fluoro-2-deoxy-D-glucose improve detection of recurrence of well-differentiated thyroid carcinoma in patients with low serum thyroglobulin?

    No full text
    International audienceThyrotropin (TSH) stimulates thyrocyte metabolism, glucose transport, and glycolysis. The interest in using recombinant human TSH (rhTSH) stimulation of fluoro-2-deoxy-D-glucose (FDG) with positron emission tomography (PET) has been shown, but mainly for patients with high serum thyroglobulin (Tg) concentration. We evaluated the use of rhTSH-stimulated PET-FDG in patients with low serum Tg concentration. Sixty-one PET/computed tomography (CT)-FDG (Biograph Sensation 16; Siemens Medical Solutions, Knoxville, TN) were performed in 44 patients (28 women and 16 men; 51 +/- 16 years) with positive Tg levels, negative or no contributive iodine-131 whole-body scintigraphy results, and no contributive morphological imaging results (ultrasound, magnetic resonance imaging, and CT). Thirty-eight patients had papillary carcinoma and six had follicular thyroid carcinoma. All patients had previously undergone total thyroidectomy and postoperative iodine ablation of thyroid bed remnant tissue. The rhTSH-stimulated PET/CT-FDG (5 MBq/kg) was performed after two 0.9 mg intramuscular doses of rhTSH (Thyrogen; Genzyme) which were administered 48 and 24 hours before imaging, while patients continued levothyroxine (LT(4)). Blood sampling was performed immediately before FDG injection for measurement of serum TSH and Tg concentrations (TSH(1) and Tg(1)) and after 48 hours (TSH(2) and Tg(2)). PET/CT-FDG findings were compared with the Tg: (i) at the initial iodine treatment during T(4) withdrawal (Tg(ini)), (ii) under T(4) (Tg(T4)) within 3 months before the PET/CT-FDG, (iii) with Tg(1), and (iv) with Tg(2). PET/CT-FDG findings were correlated with the findings of histology, iodine-131 whole-body scintigraphy, morphological imaging, or clinical follow-up. The mean Tg(ini) was 785 +/- 2707 microg/L for a TSH of 73 +/- 64 mU/L. The mean Tg(T4) was 7 +/- 15 microg/L (T(4) = 195 +/- 59 microg/day; mean TSH of 0.24 +/- 0.57 mU/L). Among the 44 patients, PET/CT-FDG findings were positive in 20 and negative in 24. Among the 61 PET/CT-FDG, 25 PET/CT-FDG were positive (41%). Among the 25 positive PET, the Tg(T4) values were less than 10 microg/L for 19, including 9 true-positive patients (20% of the 44 patients). There was no difference of PET/CT-FDG results (positive vs. negative) as related to the serum Tg concentrations (p = 0.99 for Tg(ini), p = 0.95 for Tg(T4), p = 0.07 for Tg(1), and p = 0.42 for Tg(2)). No relation was observed with PET/CT-FDG results and initial tumor size (p = 0.52) or node metastasis (p = 0.14). In the diagnosis of recurrent disease in patients with differentiated thyroid carcinoma and low Tg level, the sensitivity of rhTSH-stimulated PET/CT-FDG seems to be low and no correlation was observed between PET/CT-FDG findings and Tg level. However, positive PET-FDG results have been found in 9/44 (20%) patients with serum Tg levels lower than 10 microg/L. Therefore, this series shows that a cutoff value of 10 microg/L for the Tg under T(4) is probably not the best criteria to select patient candidates for PET/CT-FDG examination to detect the recurrence of differentiated thyroid carcinoma
    corecore